
Introduction	to	classes	and	object-oriented
programming
Fernando	Pineda	140.636	Created:	Oct.	11,	2018	version	0.2

Recall	that	objects	contain	data	and	functions.	We	refer	to	data	in	objects	as	attributes	and	we	refer	to	functions	in
objects	as	methods.

Up	to	this	point	we	have	only	used	the	built-in	Python	object	types,	e.g.	 string ,	 list ,	 integer ,	etc.	But	what	if	we
wanted	to	build	arbitrary	objects?	We	would	want	to	define	the	attributes	and	methods	that	such	objects	should	have,
AND	we	would	want	to	have	some	means	of	creating	these	objects.

Of	course,	since	everything	in	Python	is	an	object,	it	should	not	be	too	surprising	that	the	way	to	do	this	is	by	declaring
an	object	that	builds	our	objects.	The	 class 	statement	is	used	for	this	purpose.

classes	and	instances

To	start,	let's	create	a	trivial	class	with	no	attributes	and	no	methods

class	Trivial:
		pass	#	pass	is	just	a	placeholder	statement,	it	does	nothing

#	Now	we	can	make	many	Trivial	objects

t1	=	Trivial()
t2	=	Trivial()

#	Let's	investigate	these

print(t1)
print(t2)

The	two	objects	 t1 	and	 t2 	are	referred	to	as	instances	of	the	class	 Trivial 	.

Inheritance,	 __new__ 	and	 __init__

Our	class	was	rather	trivial,	yet	it	has	a	lot	of	methods	that	we	can	see	with	the	 dir() 	function.

dir(g1)

Where	did	all	the	methods	come	from?	In	Python3	all	objects	inherit	from	the	"object"	class.	In	other	words	they	inherit
methods	from	the	object	class.

Two	of	these	methods	are	particularly	important.	The	 __new__ 	method	is	the	method	that	actually	creates	an	instance
of	the	class.	The	 __new__ 	function	is	automatically	called.

The	 __init__ 	method	is	called	after	 __new__ 	and	is	used	to	initialize	attributes	when	you	create	an	instance	of	a
class.	Let's	look	at	 __init__ 	first.

initializing	attributes

Let's	create	a	simple	class	that	has	a	single	attribute	and	a	single	method

class	Simple:

		#	set	the	greeting	when	the	class	object	is	created
		greeting	=	"hello	world"	#	All	instances	share	this	attribute	value

		#	return	the	greeting
		def	greet(self):													
				return(self.greeting)

#	create	two	instances	(objects)	of	the	Simple	class
g1	=	Simple()
g2	=	Simple()

print(g1.greet())
print(g1.greet())

The	 greeting 	variable	is	a	class	variable.	All	instances	of	the	 Simple 	class	have	the	same	value.

It	would	be	useful	to	be	able	to	initialize	different	greetings	in	different	instances.	We	use	the	 __init__ 	method	to
initialize	an	object's	attributes.

class	Simple:

		#	set	the	greeting
		def	__init__(self,x):
				self.greeting	=	x				#	this	is	an	instance	variable

		def	greet(self):
				return(self.greeting)

#	create	two	instances	(objects)	of	the	Simple	class
g1	=	Simple("hello")
g2	=	Simple("greetings	of	the	day")

print(g1.greet())
print(g2.greet())

Now	let's	look	at	 _new__

fine	control	of	instance	creation	with	 super() 	and	 __new__

The	 __new___ 	method	is	called	automatically	by	Python	when	we	instantiate	an	object	for	a	new	class.	The	 super

method	is	how	we	invoke	methods	directly	from	the	parent	class.

So	this	class	definition	of	the	Trivial	class	is	exactly	the	same	as	our	previous	Trivial	class

class	Trivial():

	 def	__new__(self):
	 	 return(super().__new__(self))

Sometimes	we	want	to	do	something	special	when	we	create	an	instance	of	a	class.	For	example,	suppose	that
instead	of	creating	a	difference	object	each	time	we	instantiate	a	class,	we	instead	want	to	return	exactly	the	same
object	every	time.	In	this	case,	we	want	to	save	the	object	that	new	creates	and	then	return	it	every	subsequence	time
we	instantiate	the	class.	We	can't	use	the	class's	 __new__ 	because	it	doesn't	exist	until	after	the	object	is	instantiated,
so	we	use	the	parent	classe's	 __new__ .	We	access	the	parent's	 __new__ 	with	the	 super() 	function:

class	Singleton(object):
	 _instance	=	None

	 def	__new__(self):
	 	 if(not	self._instance):
	 	 	 self._instance	=	super().__new__(self)
	 	 	 return(self._instance)
	 	 else	:
	 	 	 return(self._instance)

s1	=	Singleton()
s2	=	Singleton()

The	first	time	we	instantiate	a	Singleton	the	 __new__ 	method	checks	if	the	class	variable	 _instance 	has	been	set.	It
has	not,	then	we	create	the	instance	object.	If	it	has	a	value,	then	we	return	that	value	instead	of	creating	new	object.
A	class	that	only	ever	returns	the	same	object	every	time	it	is	invoked,	is	called	a	"singleton"	class.

References
1.	 http://CoreyMS.com

